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ABSTRACT 
 
 
The utility of a variety of objective, quantitative and 
robust methods of assessing similarities between 
antenna measurement data have already been 
highlighted in a number of recent publications (1, 2, 3).  
These techniques involved the extraction of interval 
and ordinal features from the data sets that can then be 
effectively compared to establish their adjacency.  
However, frequently such is the volume and 
complexities of the data involved that a single 
comparison methodology is inadequate to effectively 
classify all types of data. 
 
Within this paper we intend to compare and contrast 
several techniques for obtaining a quantitative, holistic, 
measure of similarity between data sets as well as 
introducing a new hybrid technique.  In addition to 
more conventional interval techniques, e.g. cross-
correlation coefficient, two newer more sophisticated 
techniques will be presented.  These are an ordinal and 
an interval-ordinal technique.  In addition to these 
newer statistical image classification techniques, a 
novel hybrid categorical ordinal technique is developed 
that retains the advantages of the interval-ordinal 
technique but removes the requirement for 
interpolation and facilitates the comparison of two, or 
higher, dimensional data sets of differing sizes. 
 
These techniques will be illustrated with reference to a 
number of data sets that will be examined assessed and 
classified to obtain measures of adjacency that relate 
global features of the data sets.  This data is derived 
from the output of partial scan techniques (4) that 
attempt to reduce truncation errors in planar near field 
antenna measurements by the construction of bespoke 
polyhedral sampling surfaces that aim to enclose all the 
current sources. 
 
 
1. INTRODUCTION 
 
 
Frequently one is required to compare two or more 
supposedly identical data sets, for example the far field 
three-dimensional radiation pattern of the same antenna 
measured on two different facilities.  The requirement 
for obtaining an objective, quantitative and robust 
method of assessing such data is clear.  Previously, a 
novel hybrid technique has been developed that 
modifies the basic ordinal technique (1) to take account 
of different regions of interest by re tabulating the data 
in such a way as to attribute more samples to regions of 
greatest interest prior to ranking the data.  This 

approach enables the interval aspects of the data sets to 
be considered whilst minimising the impact of 
numerical instabilities that are more often associated 
with purely interval assessment techniques.  
Unfortunately, this technique relied upon interpolation, 
either approximate piecewise polynomial or rigorous 
sampling theorem, to re-tabulate the respective data 
sets.  This could introduce inaccuracy as in general it is 
always possible to pick a function that can make a 
mockery of any such scheme.  Furthermore, this 
scheme presented additional complications when 
extended to two, or higher, dimensions.  However, 
some of these difficulties can be eased if instead the 
data is categorised before the ordinal coefficient of 
adjacency is calculated.  Although there are a great 
many ways of categorising a given data set, one of the 
simplest is to divide the interval data set into a number 
of bins and to count how many elements fall within 
each bin.  Thus, each data, set will provide a single 
histogram that can be compared using the ordinal 
measure of correspondence, described in (5), 
irrespective of the number of dimensions and the 
number of elements each data set contains. 
 
The level and size of the categorising bins can be 
chosen freely which clearly enables a preference to be 
made as to what is to be emphasised, i.e. the bins can 
be distributed in a non-linear fashion.  Thus, more bins 
can be used for large signals than for small signals or 
vice versa.  In the limit, when the bins are sufficiently 
small and sufficiently numerous, their will be one bin 
per distinguishable amplitude.  In this limit, the 
categorisation process will be most sensitive and will 
closely approximate the interval data set.  Care must be 
taken when defining the categories as it is possible to 
obtain a histogram with most of the samples only 
occupying a small proportion of the available bins.  
However, such clustering can almost always be 
resolved by redistributing the bins. 
 
This categorising process yields a histogram vector of, 
say, N elements that contain the number of samples 
occupying each bin.  Repeating this categorisation 
process for a second data set will yield a similar 
histogram vector that again contains N elements 
whereupon the closeness of these vectors can 
immediately be determined by evaluating the ordinal 
measure of adjacency, or the interval cross-correlation 
coefficient.  When the adjacency of two histograms is 
determined with the cross-correlation coefficient (6) 
hereinafter this shall be termed a categorical-interval 
comparison.  Conversely, when the similarity between 
the histograms is determined with the ordinal measure 
of association this shall be termed a categorical-ordinal 
comparison.  If the cross-correlation function is utilised 



to compare histograms that have been derived from 
data sets with differing numbers of elements, the 
histograms must first be correctly normalised to unity.  
This is not a necessity if the ordinal measure of 
association is utilised.  Importantly, the ordinal 
comparison process can become computationally 
expensive if the data sets being compared are 
excessively large.  As the total number of bins 
contained within the histogram vector can be chosen 
freely, it is always possible to limit the maximum size 
of the data sets that have to be assessed by the ordinal 
comparison. 
 
The principal limitation of any categorisation process is 
that the sorting of samples into bins fails to retain 
information pertaining to the location of the sample 
within the original data set.  The impact of this can be 
illustrated with a simple example.  Let I1 be a set of 
intensity values.  Let I2 be a set of intensity values such 
that the order of elements in I2 is reversed to the order 
of elements in I1. This can be expressed mathematically 
as,    1,,2,1,,,3,2,1 21  NNNINiI .  Clearly, as the 

two sets contain the same intensities their respective 
histograms will be identical.  Thus, despite the fact that 
the respective data sets are in reality very different, the 
ordinal coefficient of correlation, or for that matter any 
correlation coefficient, will report a perfect match.  
However, whilst acknowledging this weakness, the 
object of this work is to compare radiation patterns that 
are at least visually similar 
 
 
2. MEASUREMENT ERROR SIMULATIONS 
 
 
To illustrate the applicability of this, and other, data 
assessment techniques to antenna measurements a 
partial scan technique, which attempts to reduce 
truncation errors inherent within planar near field 
antenna measurements, will be simulated.  This 
measurement technique occupies a research area that 
produces data sets that require detailed analysis to 
assess its applicability and utility as a measurement 
process.  Moving the antenna under test (AUT) 
between successive partial scans will necessarily 
involve the disturbance of the reference path of the RF 
subsystem and introduce further imperfections in the 
alignment between partial scans and the antenna.  It is 
the impact of these alignment imperfections that will 
be assessed.  A detailed description of these partial 
scan techniques can be found in (4, 5) and is not the 
purpose of this paper. 
 
To illustrate the assessment processes a number of such 
simulated measurements with in built alignment errors 
where produced.  These simulations were designed to 
replicate the degree of misalignment between adjacent 
scans that has been observed in practice.  A simple 
physical optics measurement simulation tool was 
utilised to produce a series of synthetic measurements 
that could be used to yield a knowledge of the nature 
and magnitude of two alignment errors that were 
thought to be particularly pertinent to the auxiliary 

rotation partial scan technique.  Namely, these were 
angular and range length, i.e. AUT-to-probe distance, 
errors in the alignment of the partial scans. 
 
In the absence of some overriding definitive standard 
or infallible model, the only practical methodology for 
assessing the ability of any test facility to make 
measurements is by way of repetition of these 
measurements.  This repetition can be accomplished 
without alteration in the measurement configuration, to 
simply address repeatability, or with the inclusion of 
parametric variations to assess sensitivity.  As 
repeatability is inherently a statistical process the 
validity of any conclusions drawn will greatly depend 
upon the size of the sample.  Thus it is preferable in 
this case to utilise as large a number of simulations as 
is practical. 
 
To this end, the assessment of each of these errors 
entailed the simulation of the ninety-nine tri-scan 
measurements, i.e. two hundred and ninety seven 
individual partial planes.  These measurement sets 
were transformed to the far field using the existing 
transformation computer code assuming that the data 
sets contained no imperfections in their alignment.  The 
equivalent multipath level (EMPL) was calculated 
between the ideal pattern and each of the error 
simulations.  This can be though of as the amplitude 
necessary to force the different pattern values to be 
equal.  The maximum EMPL, i.e. the worst case, value 
at each angle can be found plotted below in figure 1 
together with the ideal cardinal cut.  Similarly, figure 2 
below contains a plot of the optimum cardinal cut 
together with the maximum EMPL for case of the 
range length error simulations. 
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Figure 1 Far field azimuth cut of ideal simulation and 

maximum EMPL (pointing error). 
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Figure 2 Far field azimuth cut of ideal simulation and 

maximum EMP (range error) . 
Clearly, the natures of the impact of these measurement 
errors are very different.  These plots illustrate that, for 
the case of the range length error, the greatest errors are 



observed over a limited, wide out angular range where 
the field intensities are relatively small.  Conversely, 
the pointing error introduces pattern measurement 
errors at all angles and at all levels in the far field, i.e. 
even on boresight where the field intensities are 
greatest.  Again, a detailed explanation of these 
phenomena can be found in (5).  Here, it is only the 
difference in the form of these errors that is of interest. 
 
 
3. ASSESSMENT OF ERROR SIMULATIONS 
 
 
The nature of the errors are clearly very different, i.e. 
one error term is independent of angle and present at all 
signal levels and the other is not, thus, they constitute 
an ideal test data set for verifying and comparing the 
utility of various pattern comparison techniques.  
Unfortunately, although the concept of an EMPL is 
very useful for highlighting general differences 
between patterns it fails to deliver a single quantitative 
metric of similarity that can be used to determine 
which of these different phenomena is most important.  
Instead, these error terms have been analysed by 
computing the following coefficients of adjacency for 
each of the far field data sets: cross-correlation (6), 
ordinal correlation (2), hybrid ordinal-interval (1), the 
novel hybrid categorical-interval, and novel hybrid 
categorical-ordinal techniques. 
 
A comparison between the ideal “error-free” far field 
pattern was made with each of the 99 far field angular 
error simulations using each of the five aforementioned 
correlation coefficients.  This comparison process was 
then repeated for each of the 99 range-length error 
simulations.  The mean values of these comparisons 
can be found presented in Table 1 below.  Here, all of 
the correlation coefficients are normalised, thus if k is 
the correlation coefficient then 11  k  where k=–1 
represents a perfect negative correlation (i.e. opposite 
signals), k=1 represents a perfect correlation, and k=0 
represents no correlation. 
 

Metric Mean Value 
Angular 

Error 
Range Length 

Error 

Cross correlation 0.9931 0.9982 
Ordinal 0.8132 0.8758 
Interval-Ordinal 0.6395 0.8113 
Categorical-Interval 0.9991 0.9999 
Categorical-Ordinal (a) 0.4792 0.7709 
Categorical-Ordinal (b) 0.4275 0.9067 

Table 1 Mean Values of Correlation Coefficients 

Metric 3 Standard Deviation 
Angular 

Error 
Range Length 

Error 

Cross correlation 0.0150 0.0039 
Ordinal 0.2638 0.1638 
Interval-Ordinal   
Categorical-Interval 0.0009 0.0003 
Categorical-Ordinal (a) 0.2689 0.1040 
Categorical-Ordinal (b) 0.3866 0.1150 

Table 2 99% Confidence Intervals for Correlation Coefficients 

Here, (a) is consists of 101 bins equally spaced 
spanning the levels –70 dB to 0 dB, whilst (b) consists 
of 101 bins equally spaced spanning the levels –30 dB 
to 0 dB.  Table 2 above contains the 99% confidence 
interval, i.e. the 3 standard deviation of the k values 
about their respective mean values.  Importantly, all of 
the methods employed above for obtaining a 
quantitative assessment of the adjacency between data 
sets possess the following desirable features: 
 
 A single coefficient, independent of scaling or 

shift due to the differences in reference levels, 
 Insensitive to the large dynamic range of the data, 
 Normalised i.e. give correlation value ranging 

between 1 and –1, and finally, 
 Symmetrical or commutative to the operation of 

correspondence. 
 
Although each of these comparison procedures reveals 
small but systematic errors introduced into the 
simulations, the extent with which these variations are 
reported differ markedly. 
 
 
4. DISCUSSION OF THE RESULTS 
 
 
The cross-correlation coefficient is “saturated” by the 
dynamic range of the data as the coefficient diverged 
from unity in the third decimal place.  Although this 
coefficient reported that, on average, the range length 
error is less critical than the angular error, the 
discrimination observed is small. In general, such 
purely interval techniques are highly sensitive which in 
part results from the huge dynamic range inherent in 
the data whilst more pronounced differences between 
patterns can yield numerical instabilities within the 
technique. 
 
The results of the ordinal measure clearly shows that 
the small but systematic errors introduced into the 
simulations can be accurately quantified in the 
calculation of the k value.  However, the ordinal 
process of ranking the data to produce permutations 
takes no account of either the absolute amplitude or 
spatial angles at which the data is found.  Thus, every 
region of the pattern is judged to be equally important 
in the calculation of k.  This is clearly illustrated by 
comparison of the mean average values of k determined 
from the two different error simulations as their values 
are very similar, c.f. note the larger 99% confidence 
interval.  This is despite the fact that the range length 
error principally produces differences only in the wide 
out, small signal, sidelobe region. 
 
The interval ordinal technique aims to address the 
principal deficiency inherent within the ordinal 
technique whilst minimising the numerical instabilities 
that can be associated with purely interval techniques.  
This technique clearly shows that the angular error is of 
greater importance as it affects large, as well as small, 
fields intensities.  Thus, this hybrid approach is better 
able to isolate errors in the data that display amplitude 



specific traits and thus validates the concept.  The 
extent with which the hybrid interval-ordinal method 
discriminates between differences in element 
corresponding to signal magnitudes can be readily 
varied on a case by case basis to emphasise or de-
emphasise the particular feature under investigation.  
Unfortunately, it could perhaps have been expected that 
as less importance is being placed upon differences 
within small signals that the k value for the range 
length error would remain constant, or perhaps even 
have increased further towards unity.  As the converse 
is observed it could be concluded that the piecewise 
polynomial interpolation scheme that is utilised within 
the re-tabulating process is introducing an additional 
source of error.  If this is true, it is clearly intolerable 
and is the subject of further work. 
 
The categorical-interval/ordinal schemes remove the 
requirement for pattern re-tabulation by categorising 
the elements into a vector of predefined bins.  
Unfortunately, the categorical-interval method that 
relies upon the conventional cross-correlation 
coefficient to determine the similarity between the 
histograms has yielded correlation coefficients that are 
so close to unity that they are essentially useless.  
Despite this, the technique still managed to distinguish 
between the two forms of error source although this 
discrimination is observed in the fourth decimal place.  
This is most probably a result of the fact that the 
histogram contains significantly fewer elements than 
the data set from which it was abstracted thus the 
comparison algorithm has fewer elements with which 
to work. 
 
In contrast, the hybrid categorical-ordinal technique 
yields results that clearly discriminate differences 
between small and large signals, does not introduce 
errors from interpolation, and yields a sensitive 
correlation coefficient.  The effectiveness of the novel 
categorical-ordinal technique is illustrated by 
comparing the results labelled (a) and (b) presented 
within Table 1 above.  In each case, the data was 
divided into an equal number of bins, however, for case 
(a) the bins were equally distributed throughout a 70 
dB dynamic range whilst in (b) the data was similarly 
distributed over a smaller, 30 dB range.  As the range 
length error is principally concentrated about a 
relatively small angular range within which the field 
intensities are relatively small, it would expect that the 
agreement reported in case (b) would be better than 
that reported in case (a).  Encouragingly, this is indeed 
the case.  Furthermore, as the number of bins devoted 
to large signals is greater for case (b) than case (a) the 
agreement obtained for the angular error case has, as 
expected, worsened.  Here, the bins were equally 
distributed in a logarithmic scale so that the number of 

empty bins could be minimised.  In general, an infinite 
number of distributions can be chosen.  Although this 
yields great deal of flexibility, such a wide choice 
could lead to a choice of bins that could obscure other 
features within the data sets.  Finally, the broad 
characteristics of these comparison techniques can be 
found summarised in Table 3 below. 
 
 
5. CONCLUSION 
 
 
Two principal sources of error within auxiliary rotation 
partial scan measurement systems have been modelled.  
The effects of these errors on the far field vector 
pattern functions have been analysed using five metrics 
of adjacency that determine repeatability whereupon, 
their relative merits have been compared and 
contrasted. 
 
A new hybrid categorical-ordinal comparison 
technique has been presented that extends to the 
ordinal technique an ability to discriminate between 
differences in elements corresponding to signal 
magnitudes whilst avoiding certain limitations 
encountered within other hybrid interval-ordinal 
comparison techniques.  This allows more detailed 
characterisation and classification of specific error 
sources in the measurements, allowing the interval 
nature of the data to influence the ordinal permutations 
that are abstracted from the data. 
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Metric Interval Ordinal Single 
Coefficient 

Domain Holistic Robust Sensitivity to 
outlying points 

Absolute 
ref 

Cross-correlation Yes No Yes -1k1 Yes No Yes Yes 
Ordinal No Yes Yes -1k1 Yes Very Stable No No 

Interval-Ordinal Yes Yes Yes -1k1 Yes Stable No Yes 
Categorical- Interval Yes Yes Yes -1k1 Yes No Yes Yes 
Categorical-Ordinal Yes Yes Yes -1k1 Yes Very stable No Yes 

Table 3 Qualitative comparison of various pattern comparison techniques. 


